Design of Laser Activated Antimicrobial Porous Tricalcium Phosphate-Hydroxyapatite Scaffolds for Orthopedic Applications

Author:

Filipov Emil1ORCID,Yildiz Ridvan2,Dikovska Anna1,Sotelo Lamborghini34,Soma Tharun3,Avdeev Georgi5,Terziyska Penka6,Christiansen Silke378,Leriche Anne2,Fernandes Maria Helena910ORCID,Daskalova Albena1ORCID

Affiliation:

1. Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria

2. CERAMATHS—Laboratoire de Matériaux Céramiques et de Mathématiques, Département Matériaux et Procédés, University Polytechnique Hauts-de-France, F-59313 Valenciennes, France

3. Institute for Nanotechnology and Correlative Microscopy eV INAM, Äußere Nürnberger Str. 62, 91301 Forchheim, Germany

4. Institute for Optics, Information and Photonics, Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany

5. Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. Bld. 11, 1113 Sofia, Bulgaria

6. G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, Tsarigradsko Chausse 72 Blvd, 1784 Sofia, Bulgaria

7. Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Äußere Nürnberger Str. 62, 91301 Forchheim, Germany

8. Institut für Experimentalphysik, Fachbereich Physik, Frei Universität Berlin, Arnimalle 14, 14195 Berlin, Germany

9. Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal

10. LAQV/REQUIMTE, University of Porto, 4160-007 Porto, Portugal

Abstract

The field of bone tissue engineering is steadily being improved by novel experimental approaches. Nevertheless, microbial adhesion after scaffold implantation remains a limitation that could lead to the impairment of the regeneration process, or scaffold rejection. The present study introduces a methodology that employs laser-based strategies for the development of antimicrobial interfaces on tricalcium phosphate–hydroxyapatite (TCP-HA) scaffolds. The outer surfaces of the ceramic scaffolds with inner porosity were structured using a femtosecond laser (λ = 800 nm; τ = 70 fs) for developing micropatterns and altering local surface roughness. The pulsed laser deposition of ZnO was used for the subsequent functionalization of both laser-structured and unmodified surfaces. The impact of the fs irradiation was investigated by Raman spectroscopy and X-ray diffraction. The effects of the ZnO-layered ceramic surfaces on initial bacterial adherence were assessed by culturing Staphylococcus aureus on both functionalized and non-functionalized scaffolds. Bacterial metabolic activity and morphology were monitored via the Resazurin assay and microscopic approaches. The presence of ZnO evidently decreased the metabolic activity of bacteria and led to impaired cell morphology. The results from this study have led to the conclusion that the combination of fs laser-structured surface topography and ZnO could yield a potential antimicrobial interface for implants in bone tissue engineering.

Funder

EUROPEAN UNION’S H2020 research and innovation program

BULGARIAN NATIONAL SCIENCE FUND

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3