Effect of Silicon Carbide Fiber Length on the Flexural Strength and Flexural Modulus of Short Silicon Carbide Fiber-Reinforced Resin

Author:

Taka Norimasa1ORCID,Aoyagi Yujin2,Miida Keito2,Kanatani Mitsugu3,Ogawa Hiroshi1ORCID

Affiliation:

1. Division of Preventive Dentistry, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan

2. Division of Bio-Prosthodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan

3. Division of Biomimetics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan

Abstract

Silicon carbide fibers have superior flexural properties and chemical stability compared to glass fibers. We investigated the flexural strength and modulus of an experimental, short silicon carbide fiber-reinforced resin. Short silicon carbide fibers with lengths of ~0.5, 1, 2, and 3 mm were prepared and silanized. Urethane dimethacrylate and triethylene glycol dimethacrylate were mixed at a 70:30 wt% ratio and used as the matrix resins. Each length of short silicon carbide fibers and the matrix resin were combined using a mixing machine and then used for specimen preparation. The three-point bending test conditions were in accordance with ISO 4049:2009. The fracture surfaces of the specimens after the three-point bending test were observed using secondary electron images. The data were statistically analyzed with a one-way analysis of variance and Tukey’s HSD test (α = 0.05). The flexural strength and modulus of the specimens containing 2 mm or 3 mm silicon carbide fibers were significantly higher than the other specimens. The river pattern was observed more clearly in specimens containing shorter silicon carbide fibers, although this pattern was observed in all specimens.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3