Abstract
Rapid technological development has changed drastically the automotive industry. Network communication has improved, helping the vehicles transition from completely machine- to software-controlled technologies. The autonomous vehicle network is controlled by the controller area network (CAN) bus protocol. Nevertheless, the autonomous vehicle network still has issues and weaknesses concerning cybersecurity due to the complexity of data and traffic behaviors that benefit the unauthorized intrusion to a CAN bus and several types of attacks. Therefore, developing systems to rapidly detect message attacks in CAN is one of the biggest challenges. This study presents a high-performance system with an artificial intelligence approach that protects the vehicle network from cyber threats. The system secures the autonomous vehicle from intrusions by using deep learning approaches. The proposed security system was verified by using a real automatic vehicle network dataset, including spoofing, flood, replaying attacks, and benign packets. Preprocessing was applied to convert the categorical data into numerical. This dataset was processed by using the convolution neural network (CNN) and a hybrid network combining CNN and long short-term memory (CNN-LSTM) models to identify attack messages. The results revealed that the model achieved high performance, as evaluated by the metrics of precision, recall, F1 score, and accuracy. The proposed system achieved high accuracy (97.30%). Along with the empirical demonstration, the proposed system enhanced the detection and classification accuracy compared with the existing systems and was proven to have superior performance for real-time CAN bus security.
Funder
This research and the APC were funded by the Deanship of Scientific Research at King Faisal University for the financial support under grant
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献