Attacks to Automatous Vehicles: A Deep Learning Algorithm for Cybersecurity

Author:

Aldhyani Theyazn H. H.ORCID,Alkahtani Hasan

Abstract

Rapid technological development has changed drastically the automotive industry. Network communication has improved, helping the vehicles transition from completely machine- to software-controlled technologies. The autonomous vehicle network is controlled by the controller area network (CAN) bus protocol. Nevertheless, the autonomous vehicle network still has issues and weaknesses concerning cybersecurity due to the complexity of data and traffic behaviors that benefit the unauthorized intrusion to a CAN bus and several types of attacks. Therefore, developing systems to rapidly detect message attacks in CAN is one of the biggest challenges. This study presents a high-performance system with an artificial intelligence approach that protects the vehicle network from cyber threats. The system secures the autonomous vehicle from intrusions by using deep learning approaches. The proposed security system was verified by using a real automatic vehicle network dataset, including spoofing, flood, replaying attacks, and benign packets. Preprocessing was applied to convert the categorical data into numerical. This dataset was processed by using the convolution neural network (CNN) and a hybrid network combining CNN and long short-term memory (CNN-LSTM) models to identify attack messages. The results revealed that the model achieved high performance, as evaluated by the metrics of precision, recall, F1 score, and accuracy. The proposed system achieved high accuracy (97.30%). Along with the empirical demonstration, the proposed system enhanced the detection and classification accuracy compared with the existing systems and was proven to have superior performance for real-time CAN bus security.

Funder

This research and the APC were funded by the Deanship of Scientific Research at King Faisal University for the financial support under grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference61 articles.

1. VANET: Vehicular Applications and Inter-Networking Technologies;Hartenstein,2009

2. In-Vehicle Networks Outlook: Achievements and Challenges

3. Deep Transfer Learning Based Intrusion Detection System for Electric Vehicular Networks

4. Automotive Serial Controller Area Network;Kiencke;SAE Trans.,1986

5. Secure message propagation protocols for IoVs communication components

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3