Detection of Residual 2-Phenylphenol on Lemon Rind by Electrochemically Deposited Poly(hydroxybenzaldehyde) and Poly(hydroxybenzoic acid) Polymeric Stackings as Electrode Modifiers

Author:

Kiss László,Nagymihály Zoltán,Szabó Péter,Kollár László,Kunsági-Máté SándorORCID

Abstract

This study explores the characteristics of electrodeposition of the three hydroxybenzaldehyde isomers and selected hydroxybenzoic acids (4-hydroxybenzoic acid, salicylic acid, 3,5-dihydroxybenzoic acid) from mesityl oxide solvent. Similar to recent advances of this solvent, used by electrochemical studies, the carbon–carbon double bond had significant influence on the formation of polymers from the outlined molecules. In case of most substrates the peak currents increased to a steady-state but electropolymerization of some substrates caused significant deactivation. Scanning electron microscopic and complementary voltammetric studies facilitated that the electrochemically formed polymers are present on the electrode surface in stackings. In viewpoint of analysis of 2-phenylphenol, the modifying deposit formed from 4-hydroxybenzaldehyde was the best with 5 µM detection limit obtained with differential pulse voltammetry. Furthermore, a new procedure was chosen for the involvement of a cavitand derivative into the organic layers with the purpose to improve the layer selectivity (subsequent electrochemical polymerization in an other solution). Further studies showed that in this way the sensitivities of as-modified electrodes were a little worse than without this step, thus indicating that application of this step is disadvantageous. Recovery studies of 2-phenylphenol were carried out on lemon rind without any treatment, and it was compared with the case when the outer yellow layer was removed by rasping. The inner tissues showed very high adsorption affinity towards 2-phenylphenol.

Funder

Hungarian National Research Development

Innovation Office

European Union

European Social Fund

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3