Computer Alloy Design of Ti Modified Al-Si-Mg-Sr Casting Alloys for Achieving Simultaneous Enhancement in Strength and Ductility

Author:

Zhang Shaoji,Yi Wang,Zhong Jing,Gao JianbaoORCID,Lu Zhao,Zhang LijunORCID

Abstract

In this paper, an efficient design of a Ti-modified Al-Si-Mg-Sr casting alloy with simultaneously enhanced strength and ductility was achieved by integrating computational thermodynamics, machine learning, and key experiments within the Bayesian optimization framework. Firstly, a self-consistent Al-Si-Mg-Sr-Ti quinary thermodynamic database was established by the calculation of phase diagram method and verified by key experiments. Based on the established thermodynamic database, a high-throughput Scheil-Gulliver solidification simulation of the A356-0.005Sr alloy with different Ti contents was carried out to establish the “composition-microstructure” quantitative relationship of the alloy. Then, by combining the computational thermodynamic, machine learning, and experimental data within the Bayesian optimization framework, the relationship “composition/processing-microstructure-properties” of A356-0.005Sr with different Ti contents was constructed and validated by the key experiments. Furthermore, the optimum alloy composition of the Ti-modified A356-0.005Sr casting alloy was designed based on this integration method with the Bayesian optimization framework and verified by the experiments. It is anticipated that the present integration method may serve as a general one for the efficient design of casting alloys, especially in the high-dimensional composition space.

Funder

Science and Technology Program of Guangxi province, China

Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3