Acoustic Assessment of Multiscale Porous Lime-Cement Mortars

Author:

Palomar IreneORCID,Barluenga GonzaloORCID

Abstract

Noise pollution is an issue of high concern in urban environments and current standards and regulations trend to increase acoustic insulation requirements concerning airborne noise control. The design and development of novel building materials with enhanced acoustic performance is an efficient solution to mitigate this problem. Their application as renders and plasters can improve the acoustic conditions of existing and brand-new buildings. This paper reports the acoustic performance of eleven multiscale porous lime-cement mortars (MP-LCM) with two types of fibers (cellulose and polypropylene), gap-graded sand, and three lightweight aggregates (expanded clay, perlite, and vermiculite). Gap-graded sand was replaced by 25 and 50% of lightweight aggregates. A volume of 1.5% and 3% of cellulose fibers were added. The experimental study involved a physical characterization of properties related to mortar porous microstructure, such as apparent density, open porosity accessible to water, capillarity absorption, and water vapor permeability. Mechanical properties, such as Young’s modulus, compressibility modulus, and Poisson’s ratio were evaluated with ultrasonic pulse transmission tests. Acoustic properties, such as acoustic absorption coefficient and global index of airborne noise transmission, were measured using reduced-scale laboratory tests. The influence of mortar composition and the effects of mass, homogeneity, and stiffness on acoustic properties was assessed. Mortars with lower density, lower vapor permeability, larger open porosity, and higher Young’s and compressibility modulus showed an increase in sound insulation. The incorporation of lightweight aggregates increased sound insulation by up to 38% compared to the gap-graded sand reference mixture. Fibers slightly improved sound insulation, although a small fraction of cellulose fibers can quadruplicate noise absorption. The roughness of the exposed surface also affected sound transmission loss. A semi-quantitative multiscale model for acoustic performance, considering paste thickness, active void size, and connectivity of paste pores as key parameters, was proposed. It was observed that MP-LCM with enhanced sound insulation, slightly reduced sound absorption.

Funder

Comunidad de Madrid and the Universidad de Alcalá

Publisher

MDPI AG

Subject

General Materials Science

Reference34 articles.

1. Development of blended cement mortars with acoustic properties using petroleum coke;Pfretzschner;Constr. Build. Mater.,2011

2. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers;Arenas;Waste Manag.,2013

3. Zwitter, C., and Kosten, C.W. (1949). Sound-Absorbing Materials, Elsevier.

4. Generalized theory of acoustic propagation in porous dissipative media;Biot;J. Acoust. Soc. Am.,1962

5. The sound design of partitions;Bines;Constr. Build. Mater.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3