Behaviors of Micro-Arcs, Bubbles, and Coating Growth during Plasma Electrolytic Oxidation of β-Titanium Alloy

Author:

Yasui ToshiakiORCID,Hayashi Katsuki,Fukumoto MasahiroORCID

Abstract

The plasma electrolytic oxidation (PEO) of a titanium alloy, Ti-15V-3Cr-3Sn-3Al, was performed to develop mechanical applications by improving the tribological characteristics. The behaviors of micro-arcs, bubbles, and coating growth during the PEO process were investigated under three different operating conditions, constant voltage (CV) operation, constant current operation (CC), and short treatment time (ST) operation, to control the surface structure and function by the PEO process. A low friction coefficient was achieved by CV operation at 500 V and by CC operation at 3.0 kA/m2. The maximum coating thickness of 6.88 μm was achieved by CV operation at 500 V and 60 s. From the observation of micro-arcs, bubbles, and discharge craters by ST operation, the minimum discharge diameter of the micro-arc was 8 μm, and the discharge craters had a discharge pore size of 0.3 μm in diameter in the center with a petal-shaped burr around the discharge pore. During the PEO process, no bubble bursts around the micro-arcs and no backfilling of the discharge pores by the ejected materials were observed. Thus, the discharge pores remain a porous structure in the PEO coating for Ti. The utilization efficiency of the total charge density by CV operation above 300 V was lower than that by the conventional anodization process. The utilization efficiency of total charge density by CC operation was higher than that by the conventional anodization process.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3