Abstract
A steady-state, high-flux N2/Ar helicon wave plasma (HWP) with a small diameter (10 mm) was used to nitride the interior of a slender austenitic stainless steel (ASS) 316L tube at a temperature of 450 °C. N2 and Ar were fed to a 500 mm long slender tube with 10 mm inner diameter and were ionized inside the tube using a helicon wave in the magnetic field of 2000 G. The microstructure and depth of the nitrided layers, in addition to the morphology and hardness of the nitrided surfaces, were intensively characterized by employing scanning electron microscopy (SEM), optical microscopy (OM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), as well as microhardness tests. The results confirmed that the nitrided layer consisted primarily of the expanded austenite phase γN, and neither CrN nor iron nitride precipitates. An increasing trend in microhardness was observed in inductively coupled plasma (ICP) and HWP modes; however, the increase in HWP nitriding (up to HV 1820 with a thickness of 14 μm) was approximately 1.5 times greater than that achieved through ICP plasma nitriding. This was owing to the higher N+ ion density in the HWP mode. Considering the successful control of N2 plasma discharge in a slender tube with a small diameter, this study opens up a new avenue for achieving high-yield nitride layers inside slender tubes.
Funder
CGN-HIT Advanced Nuclear and New Energy Research Institute
Fundamental Research Funds for the Central Universities
National Development and Reform Commission
SESRI
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献