Combining Pixel Swapping and Simulated Annealing for Land Cover Mapping

Author:

Su Lijuan,Xu Yue,Yuan Yan,Yang Jingyi

Abstract

Mixed pixels commonly exist in low-resolution remote sensing images, and they are the key factors hindering the classification of land covers and high-precision mapping. To obtain the spatial information at the subpixel level, subpixel mapping (SPM) technologies, including the pixel-swapping algorithm (PSA), that use the unmixed proportions of various land covers and allocate subpixel land covers have been proposed. However, the PSA often falls into a local optimum solution. In this paper, we propose a SPM method, the PSA_MSA algorithm, that combines the PSA and the modified simulated annealing algorithm to find the global optimum solution. The modified simulated annealing algorithm swaps subpixels within a certain range to escape the local optimum solution. The method also optimizes all the mixed pixels in a randomized sequence to further improve the mapping accuracy. The experimental results demonstrate that the proposed PSA_MSA algorithm outperforms the existing PSA-based algorithms for SPM. The images with different spatial dependences are tested and the results show that the proposed algorithm is more suitable for images with high spatial autocorrelation. In addition, the effect of proportion error is analyzed by adding it in the experiments. The result shows that a higher proportion error rate leads to larger degradation of the subpixel mapping accuracy. Finally, the performance of PSA_MSA algorithm with different ranges of selection on subpixel-swapping is analyzed.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3