A Multi-Frame GLMB Smoothing Based on the Image-Observation Sensor for Tracking Multiple Weak Targets Using Belief Propagation

Author:

Cao Chenghu,Zhao YongboORCID

Abstract

The previous multi-frame version of the generalized labeled multi-Bernoulli model (MF-GLMB) only accounts for standard measurement models. It is not suitable for application in the detection and tracking of multiple weak targets (low signal-to-noise ratio) due to the measurement information loss. In this paper, we introduce a MF-GLMB model that formally incorporates a track-before-detect scheme for point targets using an image sensor model. Furthermore, a belief propagation algorithm is adopted to approximately calculate the marginal association probabilities of the multi-target posterior density. In this formulation, an MF-GLMB model based on the track-before-detect measurement model (MF-GLMB-TBD smoothing) enables multi-target posterior recursion for multi-target state estimation. By taking the entire history of the state estimation into account, MF-GLMB-TBD smoothing achieves superior performance in estimation precision compared with the corresponding GLMB-TBD filter. The simulation results demonstrate that the performance of the proposed algorithm is comparable to or better than that of the Gibbs sampler-based version.

Funder

111 project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3