Accessible Remote Sensing Data Mining Based Dew Estimation

Author:

Suo YingORCID,Wang Zhongjing,Zhang Zixiong,Fassnacht Steven R.ORCID

Abstract

Dew has been considered a supplementary water resource as it constitutes an important water supply in many ecosystems, especially in arid and semiarid areas. Remote sensing allows large-scale surface observations, offering the possibility to estimate dew in such arid and semiarid regions. In this study, by screening and combining different remote sensing variables, we obtained a well-performing monthly scale dew yield estimation model based on the support vector machine (SVM) learning method. Using daytime and nighttime land surface temperatures (LST), the normalized difference vegetation index (NDVI), and three emissivity bands (3.929–3.989 µm, 10.780–11.280 µm, and 11.770–12.270 µm) as the model inputs, the simulated site-scale monthly dew yield achieved a correlation coefficient (CC) of 0.89 and a root mean square error (RMSE) of 0.30 (mm) for the training set, and CC = 0.59 and RMSE = 0.55 (mm) for the test set. Applying the model to the Heihe River Basin (HRB), the results showed that the annual dew yield ranged from 8.83 to 20.28 mm/year, accounting for 2.12 to 66.88% of the total precipitation, with 74.81% of the area having an annual dew amount of 16 to 19 mm/year. We expanded the model application to Northwest China and obtained a dew yield of 5~30 mm/year from 2011 to 2020, indicating that dew is a non-negligible part of the water balance in this arid area. As a non-negligible part of the water cycle, the use of remote sensing to estimate dew can provide better support for future water resource assessment and analysis.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3