Global Moho Gravity Inversion from GOCE Data: Updates and Convergence Assessment of the GEMMA Model Algorithm

Author:

Rossi LorenzoORCID,Lu BiaoORCID,Reguzzoni MirkoORCID,Sampietro DanieleORCID,Fadel IslamORCID,van der Meijde MarkORCID

Abstract

Since its discovery in 1909, the Moho was routinely studied by seismological methods. However, from the 1950s, a possible alternative was introduced by gravimetric inversion. Thanks to satellite gravity missions launched from the beginning of the 21st century, a global inversion became feasible, e.g., leading to the computation of the GEMMA model in 2012. This model was computed inverting the GOCE second radial derivatives of the anomalous potential by a Wiener filter, which was applied in the spherical harmonic domain, considering a two-layer model with lateral and vertical density variations. Moreover, seismic information was introduced in the inversion to deal with the joint estimation/correction of both density and geometry of the crustal model. This study aims at revising the GEMMA algorithm from the theoretical point of view, introducing a cleaner formalization and studying the used approximations more thoroughly. The updates are on: (1) the management of the approximations due to the forward operator linearization required for the inversion; (2) the regularization of spherical harmonic coefficients in the inversion by proper modelling the Moho signal and the gravity error covariances; (3) the inclusion of additional parameters and their regularization in the Least Squares adjustment to correct the density model by exploiting seismic information. Thanks to these updates, a significant improvement from the computational point of view is achieved too, thus the convergence of the iterative solution and the differences with respect to the previous algorithm can be assessed by closed-loop tests, showing the algorithm performance in retrieving the simulated “true” Moho.

Funder

Dutch Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. Earthquake of 8 October 1909;Mohorovičić;Geofizika,1992

2. Channel waves in the Earth’s crust;Gutenberg;Geophysics,1955

3. A new global crustal thickness map;Soller;Tectonics,1982

4. CRUST 5.1: A global crustal model at 5 × 5;Mooney;J. Geophys. Res. Solid Earth,1998

5. The current limits of resolution for surface wave tomography in North America;Bassin;Eos Trans. Am. Geophys. Union,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3