Analyzing Spatial Variations of Cloud Attenuation by a Network of All-Sky Imagers

Author:

Blum Niklas BenediktORCID,Wilbert Stefan,Nouri Bijan,Stührenberg Jonas,Lezaca Galeano Jorge Enrique,Schmidt Thomas,Heinemann Detlev,Vogt ThomasORCID,Kazantzidis Andreas,Pitz-Paal Robert

Abstract

All-sky imagers (ASIs) can be used to model clouds and detect spatial variations of cloud attenuation. Such cloud modeling can support ASI-based nowcasting, upscaling of photovoltaic production and numeric weather predictions. A novel procedure is developed which uses a network of ASIs to model clouds and determine cloud attenuation more accurately over every location in the observed area, at a resolution of 50 m × 50 m. The approach combines images from neighboring ASIs which monitor the cloud scene from different perspectives. Areas covered by optically thick/intermediate/thin clouds are detected in the images of twelve ASIs and are transformed into maps of attenuation index. In areas monitored by multiple ASIs, an accuracy-weighted average combines the maps of attenuation index. An ASI observation’s local weight is calculated from its expected accuracy. Based on radiometer measurements, a probabilistic procedure derives a map of cloud attenuation from the combined map of attenuation index. Using two additional radiometers located 3.8 km west and south of the first radiometer, the ASI network’s estimations of direct normal (DNI) and global horizontal irradiance (GHI) are validated and benchmarked against estimations from an ASI pair and homogeneous persistence which uses a radiometer alone. The validation works without forecasted data, this way excluding sources of error which would be present in forecasting. The ASI network reduces errors notably (RMSD for DNI 136 W/m2, GHI 98 W/m2) compared to the ASI pair (RMSD for DNI 173 W/m2, GHI 119 W/m2 and radiometer alone (RMSD for DNI 213 W/m2), GHI 140 W/m2). A notable reduction is found in all studied conditions, classified by irradiance variability. Thus, the ASI network detects spatial variations of cloud attenuation considerably more accurately than the state-of-the-art approaches in all atmospheric conditions.

Funder

European Union’s Horizon 2020

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3