Abstract
Building extraction using deep learning techniques has advantages but relies on a large number of clean labeled samples to train the model. Complex appearance and tilt shots often cause many offsets between building labels and true locations, and these noises have a considerable impact on building extraction. This paper proposes a new knowledge distillation-based building extraction method to reduce the impact of noise on the model and maintain the generalization of the model. The method can maximize the generalizable knowledge of large-scale noisy samples and the accurate supervision of small-scale clean samples. The proposed method comprises two similar teacher and student networks, where the teacher network is trained by large-scale noisy samples and the student network is trained by small-scale clean samples and guided by the knowledge of the teacher network. Experimental results show that the student network can not only alleviate the influence of noise labels but also obtain the capability of building extraction without incorrect labels in the teacher network and improve the performance of building extraction.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献