Tectonism of Late Noachian Mars: Surface Signatures from the Southern Highlands

Author:

Ruj TrishitORCID,Komatsu GoroORCID,Schmidt GeneORCID,Karunatillake Suniti,Kawai Kenji

Abstract

Upwelling mantle plumes often instigate extensional stress within the continental crust of Earth. When stress exceeds crustal strength, extensional structures develop, reducing the effective stress and trigger magmatic processes at the crust–mantle boundary. However, such processes and their relationship to the formation of many surface structures remain poorly characterized on Mars. We identified a series of extensional structures in the southern highlands of Mars which collectively resemble continental rift zones on Earth. We further characterized these extensional structures and their surrounding region (area of ~1.8 M km2) by determining the surface mineralogy and bulk regional geochemistry of the terrain. In turn, this constrains their formation and yields a framework for their comparison with extensional structures on Earth. These terrains are notable for olivine and high-Ca pyroxene with a high abundance of potassium and calcium akin to alkali basalts. In the case of Mars, this Earth-like proto-plate tectonic scenario may be related to the plume-induced crustal stretching and considering their distribution and temporal relationship with the Hellas basin, we conclude that the plume is impact-induced. Overall, the findings of this work support the presence of mantle plume activity in the Noachian, as suggested by thermal evolution models of Mars.

Funder

Japan Society for the Promotion of Science

Italian Ministry for Education, University and Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference82 articles.

1. Schubert, G., Turcotte, D.L., and Olson, P. (2001). Mantle Convection in the Earth and Planets, Cambridge University Press.

2. Heat-Pipe Planets;Earth Planet. Sci. Lett.,2017

3. Present-Day Heat Flow Model of Mars;Sci. Rep.,2017

4. Plume Tectonics;J. Geol. Soc. Jpn.,1994

5. Baker, V.R., Maruyama, S., and Dohm, J.M. (2007). Superplumes: Beyond Plate Tectonics, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3