Relationships between Grain Weight and Other Yield Component Traits of Maize Varieties Exposed to Heat-Stress and Combined Heat- and Water-Stress Conditions

Author:

Chukwudi Uchechukwu PaschalORCID,Mavengahama SydneyORCID,Kutu Funso RaphaelORCID

Abstract

It is necessary to identify the appropriate traits that influence yield in a given environment as part of a breeding programme. The objective of this study was to identify the morphological traits that contribute to maize grain weight (GWt) under abiotic stress conditions. Three drought-tolerant maize varieties were grown under no-stress (NHWS), heat-stress (HS), and combined heat- and water-stress (CHWS) conditions. Data from 19 morphological traits were analysed. The correlation results revealed that eight traits consistently produced a significant positive relationship with GWt under the three growth conditions. The path coefficient analysis revealed that in the NHWS, HS, and CHWS conditions, five traits consistently had a positive direct effect on the GWt. Given the magnitude of the positive direct effects, increasing dry biomass yield, harvest index, and grain number in the NHWS; grain number, harvest index, and ear width in the HS; and harvest index, days till silk appearance, leaf chlorophyll content, and grain number in the CHWS will increase GWt. Under various abiotic stress conditions, maize phenotypic expression varied. Therefore, the identified traits that contributed positively to GWt under various stress conditions should be considered when developing a maize improvement programme in a stress-prone environment.

Publisher

MDPI AG

Subject

General Medicine

Reference34 articles.

1. UN (2020). The Sustainable Development Goals Report, UN.

2. FAO (2018). The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition, Food & Agriculture Organization.

3. IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

4. Nonlinear heat effects on African maize as evidenced by historical yield trials;Lobell;Nat. Clim. Change,2011

5. Meseka, S., Menkir, A., Bossey, B., and Mengesha, W. (2018). Performance assessment of drought tolerant maize hybrids under combined drought and heat stress. Agronomy, 8.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3