Effects of Phloem-Feeding Pest, Dalbulus maidis on Morphological Expression of Drought-Tolerant Traits in Maize

Author:

Jones Tara-Kay L.,Medina Raul F.ORCID,Bernal Julio S.ORCID

Abstract

Drought is amongst the most important stressors affecting maize production globally. Existing strategies to offset drought impacts are centered around the rapid development of drought-tolerant cultivars through plant breeding. However, under both current conditions and projected climate changes, additional stressors such as insect pests will co-occur. To determine the impact of combined insect and drought stress on drought tolerance in maize, we assessed the effects of Dalbulus maidis, drought, and both stresses combined in drought-tolerant maize hybrids. We measured several maize morphological growth traits (i.e., plant height, stem diameter, shoot weight, root weight, root length, and root-to-shoot ratio) at the end of a 28-day period of pulse-stress and no-stress control exposure. We found that seedling growth declined when both stressors co-occurred. Nevertheless, drought-tolerant maize hybrids remained strongly tolerant to drought regardless of D. maidis infestation. While our results showed that drought tolerance is maintained in drought-tolerant maize seedlings, future studies should address any effects on maize yield. Our study highlights the importance of testing the combined effects of drought and insect stressors to better predict insect–plant interactions in the context of plant breeding for drought-tolerant traits in a changing climate.

Publisher

MDPI AG

Reference81 articles.

1. Drought responses on physiological attributes of Zea mays in relation to nitrogen and source-sink relationships;Rafique,2020

2. A Review on Abiotic Stress Resistance in Maize (Zea mays L.): Effects, Resistance Mechanisms and Management;Bhusal;J. Biol. Today’s World,2021

3. Global Synthesis of Drought Effects on Maize and Wheat Production

4. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification

5. Yield Trends Are Insufficient to Double Global Crop Production by 2050

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3