The Antarctic Scallop Adamussium colbecki Is Unable to Transcriptomically Respond to Captivity and Moderate Thermal Stress

Author:

Greco Samuele1ORCID,Gaetano Anastasia Serena2ORCID,Manfrin Chiara1ORCID,Capanni Francesca3ORCID,Santovito Gianfranco4ORCID,Pallavicini Alberto1ORCID,Giulianini Piero Giulio1ORCID,Gerdol Marco2ORCID

Affiliation:

1. Department of Life Sciences, University of Trieste, 34127 Trieste, Italy

2. Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy

3. Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy

4. Department of Biology, University of Padova, 35122 Padova, Italy

Abstract

Adamussium colbecki is a scallop endemic of the Antarctic Ocean, the only modern survivor of the Adamussiini tribe and one of the few bivalves living in polar environments. Compared with other Antarctic animals, very little is known concerning the evolutionary adaptations which allow this species to thrive at sub-zero temperatures. Due to its local abundance and sensitivity to environmental changes, A. colbecki is an interesting model for studying the effects of pollution and climate change in the Antarctic Ocean. Here, we report, for the first time, the application of transcriptomic tools to the study of the effects of a short-to-medium term exposure to a +1.5 °C water temperature increase on three tissues. Although this approach did not highlight any significant change in response to thermal stress, we observed slight alterations in energetic metabolism and nutrient adsorption in the digestive gland, most likely linked with stabling in experimental tanks. The results of our study suggest that A. colbecki may be particularly vulnerable to the effects of climate change due to its complete inability to adapt to temperature increase at the transcriptomic level.

Funder

Italian Program of Antarctic Research

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3