Abscisic Acid: Metabolism, Signaling, and Crosstalk with Other Phytohormones under Heavy Metal Stress

Author:

Bano Ambreen12ORCID,Singh Kratika1ORCID,Singh Surendra Pratap3ORCID,Sharma Pooja45

Affiliation:

1. Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India

2. Molecular Department, RML Mehrotra Pathology, Lucknow 226020, India

3. Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur 208001, India

4. NUS Environmental Research Institute, National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore

5. Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore

Abstract

Heavy metal (HM) stress poses a global risk to crops, ecological systems, and human health. It disrupts cellular ionic equilibrium, cell membrane integrity, metabolic balance, and the activities of enzymes and proteins, severely impacting physiological processes, plant development, and agricultural productivity. Although plants naturally activate defense mechanisms to mitigate the adverse effects of HM stress, they cannot completely prevent them. Phytohormones counter HM toxicity, aiding growth. External application and internal regulation via signaling/biosynthesis genes offer defense against HM-induced damage. A pivotal signaling molecule in plant adaptive responses to environmental stressors, including HM toxicity, is abscisic acid (ABA). Despite ABA’s role in abiotic stress responses such as drought and salinity, its function and crosstalk with other phytohormones under HM stress remain poorly understood. Nonetheless, exogenously applied ABA serves as a strategic approach to enhancing plants’ resistance to HM toxicity by promoting osmolyte accumulation and reinforcing antioxidant activity. ABA significantly regulates various plant growth and metabolic activities under diverse environmental conditions. This review highlights the effects of HM stress on plants and explores ABA involvement in production, signaling, catabolism, and transport within plant tissues. The purpose of this paper is to shed light on the complex interplay between the metabolism of ABA, its signaling, and its interactions with other phytohormones (e.g., auxins, gibberellins, and ethylene) during HM exposure. Furthermore, we delve into the function of ABA to mitigate HM stress and elucidate its interactions with other phytohormones.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3