A Study on Short-Term Air Consumption Prediction Model for Air-Jet Looms Combining Sliding Time Window and Incremental Learning

Author:

Yu Bo12,Fang Liaoliao12,Wu Zihao12,Shen Chunya3,Hu Xudong12

Affiliation:

1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. Zhejiang Provincial Key Laboratory of Modern Textile Equipment Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China

3. Zhejiang Kangli Automation Technology Co., Ltd., Shaoxing 312500, China

Abstract

The energy consumption of air-jet looms mainly comes from air compressors. Predicting the air consumption of air-jet looms for the upcoming period is significant for the variable frequency adjustment of air compressors, thereby aiding in energy saving and reducing fabric costs. This paper proposes an innovative method that combines Sliding Time Windows (STW), feature analysis, and incremental learning to improve the accuracy of short-term air consumption prediction. First, the STW method is employed during the data collection phase to enhance data reliability. Through feature analysis, significant factors affecting the air consumption of air-jet looms, beyond traditional research, are explored and incorporated into the prediction model. The experimental results indicate that the introduction of new features improved the model’s R2 from 0.905 to 0.950 and reduced the MSE from 32.369 to 16.239. The STW method applied to the same random forest model increased the R2 from 0.906 to 0.950 and decreased the MSE from 32.244 to 16.239. The decision tree method, compared to the linear regression model, improved the R2 from 0.928 to 0.950 and reduced the MSE from 23.541 to 16.239, demonstrating significant predictive performance enhancement. After establishing the optimal model, incremental learning is used to continuously improve the reliability and accuracy of short-term predictions. Experiments show that the incremental learning method, compared to static models, offers better resilience and reliability when new data are collected. The proposed method significantly improves the accuracy of air consumption prediction for air-jet looms, providing strong support for the variable frequency adjustment of air compressors, and contributes to the goals of energy saving and cost reduction. The research results indicate that this method not only enhances prediction accuracy but also provides new insights and methods for future energy-saving research.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3