Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions

Author:

Aoun Alain1,Adda Mehdi1ORCID,Ilinca Adrian2ORCID,Ghandour Mazen3,Ibrahim Hussein4

Affiliation:

1. Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski (UQAR), Rimouski, QC G5L 3A1, Canada

2. Département de Génie Mécanique, Ecole de Technologie Supérieure (ETS), Montréal, QC H3C 1K3, Canada

3. Faculty of Engineering, Lebanese University, Beirut 1003, Lebanon

4. Centre National Intégré du Manufacturier Intelligent (CNIMI), Université du Québec à Trois-Rivières (UQTR), Drummondville, QC J2C 0R5, Canada

Abstract

The modern energy landscape is undergoing a significant transformation towards cleaner, decentralized energy sources. This change is driven by environmental and sustainability needs, causing traditional centralized electric grids, which rely heavily on fossil fuels, to be replaced by a diverse range of decentralized distributed energy resources. Virtual power plants (VPPs) have surfaced as a flexible solution in this transition. A VPP’s primary role is to optimize energy production, storage, and distribution by coordinating output from various connected sources. Relying on advanced communication and control systems, a VPP can balance supply and demand in real time, offer ancillary services, and support grid stability. However, aligning VPPs’ economic and operational practices with broader environmental goals and policies is a challenging yet crucial aspect. This article introduces a new VPP management and optimization algorithm designed for quick and intelligent decision-making, aiming for the lowest levelized cost of energy (LCOE), minimum grid technical losses, and greenhouse gas (GHG) emissions. The algorithm’s effectiveness is confirmed using the IEEE 33-bus grid with 10 different distributed power generators. Simulation results show the algorithm’s responsiveness to complex variables found in practical scenarios, finding the optimal combination of available energy resources. This minimizes the LCOE, technical losses, and GHG emissions in less than 0.08 s, achieving a total LCOE reduction of 16% from the baseline. This work contributes to the development of intelligent energy management systems, aiding the transition towards a more resilient and sustainable energy infrastructure.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3