Research on Transformer Condition Prediction Based on Gas Prediction and Fault Diagnosis

Author:

Ding Can1ORCID,Chen Wenhui1,Yu Donghai1,Yan Yongcan1

Affiliation:

1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China

Abstract

As an indispensable part of the power system, transformers need to be continuously monitored to detect anomalies or faults in a timely manner to avoid serious damage to the power grid and society. This article proposes a combined model for transformer state prediction, which integrates gas concentration prediction and fault diagnosis models. First, based on the historical monitoring data, each characteristic gas sequence is subjected to one optimal variational mode decomposition (OVMD) and one complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). The decomposed sub-sequences are input into a bi-directional long short-term memory network (Bi-LSTM) optimized by the sparrow search algorithm (SSA) for prediction, and the predicted value of each sub-sequence was then superimposed to be the predicted value of the characteristic gas. We input the predicted values of each gas into the improved sparrow search algorithm-optimized support vector machine (ISSA-SVM) model, which can output the final fault type. After the construction of the combined model of state prediction is completed, this paper uses three actual cases to test the model, and at the same time, it uses the traditional fault diagnosis methods to judge the cases and compare these methods with the model in this paper. The results show that the combined model of transformer state prediction constructed in this paper is able to predict the type of transformer faults in the future effectively, and it is of great significance for the practical application of transformer fault type diagnosis.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3