A Review and Prospective Study on Modeling Approaches and Applications of Virtual Energy Storage in Integrated Electric–Thermal Energy Systems

Author:

Fu Qitong1ORCID,Xing Zuoxia1,Zhang Chao1ORCID,Xu Jian1

Affiliation:

1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China

Abstract

The increasing use of renewable energy sources introduces significant fluctuations in power generation, demanding enhanced regulatory capabilities to maintain the balance between power supply and demand. To promote multi-energy coupling and the local consumption of renewable energy, integrated energy systems have become a focal point of multidisciplinary research. This study models adjustable sources, networks, and loads within electric–thermal integrated energy systems as energy storage entities, forming virtual energy storage systems to participate in the optimization and scheduling of integrated energy systems. This paper investigates the modeling and control strategies of virtual energy storage systems within electric–thermal integrated energy systems. Initially, it introduces the definition, logical architecture, and technical connotations of virtual energy storage. Next, it models temperature-controlled loads as virtual energy storage systems and compares them with traditional energy storage systems, analyzing their characteristic differences and summarizing virtual energy storage system modeling methods and characteristic indicators. This paper then focuses on the specific applications of virtual energy storage systems in four typical scenarios. Finally, it explores the future development directions of virtual energy storage.

Funder

National Natural Science Foundation of China

Liaoning Province Science and Technology Plan Joint Plan (Fund) Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3