Design of Optimal Pitch Controller for Wind Turbines Based on Back-Propagation Neural Network

Author:

Qin Shengsheng12ORCID,Cao Zhipeng1,Wang Feng1,Ngu Sze Song2,Kho Lee Chin2,Cai Hui1

Affiliation:

1. School of Electrical Engineering, Yancheng Institute of Technology, Yancheng 224051, China

2. Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia

Abstract

To ensure the stable operation of a wind turbine generator system when the wind speed exceeds the rated value and address the issue of excessive rotor speed during high wind speeds, this paper proposes a novel variable pitch controller strategy based on a back-propagation neural network and optimal control theory to solve this problem. Firstly, a mathematical model for the wind turbine is established and linearized. Then, each optimal sub-controller is designed for different wind speed conditions by optimal theory. Subsequently, a back-propagation neural network is utilized to learn the variation pattern of controller parameters with respect to wind speed. Finally, real-time changes in wind speed are applied to evaluate and adjust controller parameters using the trained back-propagation neural network. The model is simulated in MATLAB 2019b, real-time data are observed, and the control effect is compared with that of a Takagi–Sugeno optimal controller, firefly algorithm optimal controller and fuzzy controller. The simulation results show that the rotor speed overshoot of the optimal controller under the step wind speed is the smallest, only 0.05 rad/s. Under other wind speed conditions, the rotor speed range fluctuates around 4.35 rad/s, and the fluctuation size is less than 0.2 rad/s, which is much smaller than the fluctuation range of other controllers. It can be seen that the back-propagation optimal controller can ensure the stability of the rotor speed above the rated wind speed. At the same time, it has better control accuracy compared to other controllers.

Funder

School of Electrical Engineering, Yancheng Institute of Technology

Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Malaysia Sarawak

Publisher

MDPI AG

Reference33 articles.

1. (2024, June 17). Strong 2023 Offshore Wind Growth as Industry Sets Course for Record-Breaking Decade. Available online: https://gwec.net/strong-2023-offshore-wind-growth-as-industry-sets-course-for-record-breaking-decade/.

2. Cost analysis of onshore wind power in China based on learning curve;Zhang;Energy,2024

3. Research on pitch control and low voltage crossing technology of doubly-fed wind turbine;Liu;Appl. Energy Technol.,2023

4. Technical analysis of pitch angle control for wind turbine;Lu;Integr. Circuit Appl.,2023

5. Yang, B., and Yang, L. (2022). Research on Robust Control of Variable Speed and Variable Pitch Permanent Magnet Synchronous Wind Turbine, Kunming University of Science and Technology.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3