Effects of Lean Burn on Combustion and Emissions of a DISI Engine Fueled with Methanol–Gasoline Blends

Author:

Zhang Miaomiao1,Cao Jianbin1

Affiliation:

1. School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou 221116, China

Abstract

Methanol has significant potential as an alternative fuel for internal combustion engines. Using methanol–gasoline blends with lean-burn technology in traditional spark-ignition engines can enhance fuel economy and reduce emissions. This paper investigates the effects of lean burn on the combustion and emissions in a commercial direct-injection gasoline engine fueled with methanol–gasoline blends. The lean-burn mode is adjusted by controlling the injection strategy. The results show that homogeneous lean burn (HLB) has earlier combustion phase and better power performance when the excess air ratio (λ) is less than 1.3, while its combustion phase extends more than stratified lean burn (SLB) when λ exceeds 1.4. Both lean-burn modes achieve optimal fuel economy at λ = 1.2–1.3. Under stable conditions, BSFC decreases with higher methanol blending ratios, with SLB being more economical at low blending ratios and HLB at higher ratios. The lowest HC and particulate matter emissions for both modes are achieved around λ = 1.3. SLB has lower NOX emissions when λ < 1.3, while HLB shows lower NOX emissions when λ > 1.3. The particulate size distribution is bimodal for blending lean-burn conditions, with SLB having the highest nucleation mode peak and HLB the highest accumulation mode peak. M20 (20% volume of methanol) corresponds to the highest particle emissions under lean-burn conditions. This study can provide a deeper understanding of methanol–gasoline blending lean burn, and provide a reference for emission control of spark-ignition engines.

Funder

Natural Science Research Fund Project of Jiangsu Normal University

Jiangsu Province Higher Education Basic Science (Natural Science) Research Project

Jiangsu Province Industry-University-Research Cooperation Project

Xuzhou Science and Technology Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3