Potato Leaf Area Index Estimation Using Multi-Sensor Unmanned Aerial Vehicle (UAV) Imagery and Machine Learning

Author:

Yu Tong1,Zhou Jing1ORCID,Fan Jiahao1,Wang Yi2ORCID,Zhang Zhou1ORCID

Affiliation:

1. Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

2. Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

Potato holds significant importance as a staple food crop worldwide, particularly in addressing the needs of a growing population. Accurate estimation of the potato Leaf Area Index (LAI) plays a crucial role in predicting crop yield and facilitating precise management practices. Leveraging the capabilities of UAV platforms, we harnessed their efficiency in capturing multi-source, high-resolution remote sensing data. Our study focused on estimating potato LAI utilizing UAV-based digital red–green–blue (RGB) images, Light Detection and Ranging (LiDAR) points, and hyperspectral images (HSI). From these data sources, we computed four sets of indices and employed them as inputs for four different machine-learning regression models: Support Vector Regression (SVR), Random Forest Regression (RFR), Histogram-based Gradient Boosting Regression Tree (HGBR), and Partial Least-Squares Regression (PLSR). We assessed the accuracy of individual features as well as various combinations of feature levels. Among the three sensors, HSI exhibited the most promising results due to its rich spectral information, surpassing the performance of LiDAR and RGB. Notably, the fusion of multiple features outperformed any single component, with the combination of all features of all sensors achieving the highest R2 value of 0.782. HSI, especially when utilized in calculating vegetation indices, emerged as the most critical feature in the combination experiments. LiDAR played a relatively smaller role in potato LAI estimation compared to HSI and RGB. Additionally, we discovered that the RFR excelled at effectively integrating features.

Funder

USDA National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3