Effect of Mixing Technique on Physico-Chemical Characteristics of Blended Membranes for Gas Separation

Author:

Qadir Danial1,Suleman Humbul1ORCID,Ahmad Faizan1

Affiliation:

1. School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK

Abstract

Polymer blending has attracted considerable attention because of its ability to overcome the permeability–selectivity trade-off in gas separation applications. In this study, polysulfone (PSU)-modified cellulose acetate (CA) membranes were prepared using N-methyl-2-pyrrolidone (NMP) and tetrahydrofuran (THF) using a dry–wet phase inversion technique. The membranes were characterized using scanning electron microscopy (SEM) for morphological analysis, thermogravimetric analysis (TGA) for thermal stability, and Fourier transform infrared spectroscopy (FTIR) to identify the chemical changes on the surface of the membranes. Our analyses confirmed that the mixing method (the route chosen for preparing the casting solution for the blended membranes) significantly influences the morphological and thermal properties of the resultant membranes. The blended membranes exhibited a transition from a finger-like pore structure to a dense substructure in the presence of macrovoids. Similarly, thermal analysis confirmed the improved residual weight (up to 7%) and higher onset degradation temperature (up to 10 °C) of the synthesized membranes. Finally, spectral analysis confirmed that the blending of both polymers was physical only.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3