Application of Cost Effective and Real-Time Resistivity Sensor to Study Early Age Concrete

Author:

Tenório Filho José Roberto1ORCID,Abbas Yawar2,Oudenhoven Jos2ORCID,Matthys Stijn1ORCID

Affiliation:

1. Magnel-Vandepitte Laboratory, Department of Structural Engineering and Building Materials, Faculty of Engineering and Architecture, Ghent University, Tech Lane Ghent Science Park, Campus A, Technologiepark Zwijnaarde 60, B-9052 Ghent, Belgium

2. IMEC at Holst Centre, 5656 AE Eindhoven, The Netherlands

Abstract

Concrete is a widely used construction material, demanding strict quality control to maintain its integrity. The durability and lifespan of concrete structures rely heavily, amongst other factors, on the characteristics of fresh and early age concrete, which are strongly dependent on the curing process. To ensure long-term durability, it is crucial to assess concrete properties throughout construction and verify compliance with design specifications. Currently, electrical resistivity-based sensors are available and used for quality control and monitoring, however, these sensors tend to be costly or only measure at a single location within the concrete cover. This study introduces a printed circuit board (PCB)-based array of electrodes capable of measuring concrete resistivity profiles across the concrete cover, from its fresh state to early age development. In this work, the feasibility of such resistivity PCB-sensors, novel for concrete, is evaluated under laboratory conditions. The sensors exhibit a promising performance in monitoring the efficiency of concrete curing under various conditions. Additionally, they successfully evaluate the effectiveness of internal curing (in our study, promoted by superabsorbent polymers) during the initial stages of hardening. This sensor array provides a valuable tool for monitoring the curing of concrete at early age, and showcases a preliminary solution that could be further developed to ensure long-term performance of concrete infrastructure.

Funder

IMEC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3