Fiber Optic Gas Sensors Based on Lossy Mode Resonances and Sensing Materials Used Therefor: A Comprehensive Review

Author:

Vitoria Ignacio,Ruiz Zamarreño CarlosORCID,Ozcariz AritzORCID,Matias Ignacio R.ORCID

Abstract

Pollution in cities induces harmful effects on human health, which continuously increases the global demand of gas sensors for air quality control and monitoring. In the same manner, the industrial sector requests new gas sensors for their productive processes. Moreover, the association between exhaled gases and a wide range of diseases or health conditions opens the door for new diagnostic applications. The large number of applications for gas sensors has permitted the development of multiple sensing technologies. Among them, optical fiber gas sensors enable their utilization in remote locations, confined spaces or hostile environments as well as corrosive or explosive atmospheres. Particularly, Lossy Mode Resonance (LMR)-based optical fiber sensors employ the traditional metal oxides used for gas sensing purposes for the generation of the resonances. Some research has been conducted on the development of LMR-based optical fiber gas sensors; however, they have not been fully exploited yet and offer optimal possibilities for improvement. This review gives the reader a complete overview of the works focused on the utilization of LMR-based optical fiber sensors for gas sensing applications, summarizing the materials used for the development of these sensors as well as the fabrication procedures and the performance of these devices.

Funder

Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3