On the Design of an Energy Efficient Digital IIR A-Weighting Filter Using Approximate Multiplication

Author:

Pilipović RatkoORCID,Risojević VladimirORCID,Bulić PatricioORCID

Abstract

This paper presents a new A-weighting filter’s design and explores the potential of using approximate multiplication for low-power digital A-weighting filter implementation. It presents a thorough analysis of the effects of approximate multiplication, coefficient quantization, the order of first-order sections in the filter’s cascade, and zero-pole pairings on the frequency response of the digital A-weighting filter. The proposed A-weighting filter was implemented as a sixth-order IIR filter using approximate odd radix-4 multipliers. The proposed filter was synthesized (Verilog to GDS) using the Nangate45 cell library, and MATLAB simulations were performed to verify the designed filter’s magnitude response and performance. Synthesis results indicate that the proposed design achieves nearly 70% reduction in energy (power-delay product) with a negligible deviation of the frequency response from the floating-point implementation. Experiments on acoustic noise suggest that the proposed digital A-weighting filter can be deployed in environmental noise measurement applications without any notable performance degradation.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A First Experimental Study of Fixed-Point Approximate Arithmetic in Recursive Lattice Filters;2023 IEEE Nordic Circuits and Systems Conference (NorCAS);2023-10-31

2. On Numerical Robustness of Bi-quad Structures using Fixed-Point Approximate Multiplication;2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC);2022-10-30

3. Study on Vibration-Transmission-Path Identification Method for Hydropower Houses Based on CEEMDAN-SVD-TE;Applied Sciences;2022-07-25

4. An IoT-Enabled Acoustic Sensing Platform for Noise Pollution Monitoring;2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON);2021-12-01

5. Digital Moving Average Filter Application for Echo Signals and Temperature;E3S Web of Conferences;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3