NTN1 Affects Porcine Intramuscular Fat Content by Affecting the Expression of Myogenic Regulatory Factors

Author:

Wang Ligang,Zhao Lingling,Zhang Longchao,Liu Xin,Hou Xinhua,Gao Hongmei,Yan Hua,Zhao FupingORCID,Wang Lixian

Abstract

Intramuscular fat (IMF) content is an important economic trait for pork quality. Our previous results regarding the genome-wide association between IMF content and copy number variations (CNVs) indicated that the CNV within Netrin-1(NTN1-CNV) was significantly associated with IMF. In order to validate the effect of NTN1-CNV, we detected the Netrin-1 (NTN1) gene dose and protein expression content in the longissimus dorsi of different IMF content pigs using Western blotting and investigated the expression of NTN1 RNA in different tissues using real-time quantitative polymerase chain reaction (qPCR). The knock-down of the NTN1 gene in C2C12 and 3T3-L1 cells and over-expression in C2C12 cells during the proliferation and differentiation stage were also investigated to explore the possible pathway of action of NTN1. The results showed that in individuals with IMF content differences, the gene dose of NTN1 and the expression of NTN1 protein were also significantly different, which indicated that NTN1-CNV may directly affect IMF by its coding protein. NTN1 had the highest expression in pig longissimus dorsi and backfat tissues, which indicates that NTN1 may play an important role in muscle and fat tissues. The in vitro validation assay indicated that NTN1 silencing could promote the proliferation and inhibit the differentiation of C2C12 cells, with no effect on 3T3-L1 cells. Additionally, NTN1 over-expression could inhibit the proliferation and promote the differentiation of C2C12 cells. Combined with previous research, we conclude that NTN1-CNV may affect IMF by its gene dose, and the expression of NTN1 may affect the proliferation and differentiation of muscle cells by the AMP-activated protein kinase (AMPK) pathway and finally influence the IMF.

Funder

National Natural Science Foundation

Agricultural Science and Technology Innovation Project

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3