Quartz Enhanced Photoacoustic Spectroscopy on Solid Samples

Author:

Falkhofen Judith12ORCID,Bahr Marc-Simon12ORCID,Baumann Bernd1ORCID,Wolff Marcus1ORCID

Affiliation:

1. Heinrich Blasius Institute of Physical Technologies, Hamburg University of Applied Sciences, 20999 Hamburg, Germany

2. School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Scotland High Street, Paisley PA1 2BE, UK

Abstract

Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) is a technique in which the sound wave is detected by a quartz tuning fork (QTF). It enables particularly high specificity with respect to the excitation frequency and is well known for an extraordinarily sensitive analysis of gaseous samples. We have developed the first photoacoustic (PA) cell for QEPAS on solid samples. Periodic heating of the sample is excited by modulated light from an interband cascade laser (ICL) in the infrared region. The cell represents a half-open cylinder that exhibits an acoustical resonance frequency equal to that of the QTF and, therefore, additionally amplifies the PA signal. The antinode of the sound pressure of the first longitudinal overtone can be accessed by the sound detector. A 3D finite element (FE) simulation confirms the optimal dimensions of the new cylindrical cell with the given QTF resonance frequency. An experimental verification is performed with an ultrasound micro-electromechanical system (MEMS) microphone. The presented frequency-dependent QEPAS measurement exhibits a low noise signal with a high-quality factor. The QEPAS-based investigation of three different solid synthetics resulted in a linearly dependent signal with respect to the absorption.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3