Dynamic Characteristics of Vegetation Change Based on Reconstructed Heterogenous NDVI in Seismic Regions

Author:

Wu ShaolinORCID,Di BaofengORCID,Ustin Susan L.ORCID,Wong Man SingORCID,Adhikari Basanta RajORCID,Zhang Ruixin,Luo Maoting

Abstract

The need to protect forests and enhance the capacity of mountain ecosystems is highlighted in the U.N.’s Sustainable Development Goal (SDG) 15. The worst-hit areas of the 2008 Wenchuan Earthquake in southwest China were mountainous regions with high biodiversity and the impacted area is typical of other montane regions, with the need for detecting vegetation changes following the impacts of catastrophes. While the widely used remotely sensed vegetation indicator NDVI is available from various satellite data sources, these satellites are available for different monitoring periods and durations. Combining these datasets proved challenging to make a continuous characterization of vegetation change over an extended time period. In this study, compared with linear regression, multiple linear regression, and random forest, Convolutional Neural Networks (CNNs) performed best with an average R2 of 0.819 (leave-one-out cross-validation). Thus, the CNNs model was selected to establish the map of the overlapping periods of two remote-sensing products: SPOT-VGT NDVI and PROBA-V NDVI, to reconstruct a SPOT-VGT NDVI for the period from June 2014 to December 2018 in the worst-hit areas of the Wenchuan earthquake. We analyzed the original and reconstructed SPOT-VGT NDVI in the hard-hit areas of the Wenchuan earthquake from 1999 to 2018, and we concluded that NDVI showed an overall upward trend throughout the study period, but experienced a sharp decline in 2008 and reached its lowest value a year later (2009). Vegetation recovery was rapid from 2009 until 2011 after which, it returned to a pattern of slower natural growth (2012–2018). The Longmenshan fault zone experienced the greatest vegetation damage and initiation of recovery there has caused the overall regional average recovery to lag by 1–2 years. In areas where the land was denuded of vegetation (i.e., effectively all vegetation was stripped from the surface) after the earthquake, the damage exceeded what was experienced anywhere else in the entire study area, and by 2018 it remained unrestored. In the 15 years since the earthquake, the areas that were denuded were expected to recover to the level of restoration equivalent with the NDVI of 2007, as was the case in other earthquake-damaged regions. In addition to the earthquake and the immediate loss of vegetation, the Chinese government’s Grain for Green Policy, the elevation ranges within the region, the forest’s phenological conditions, and human activities all had an impact on vegetation recovery and restoration. The reconstructed NDVI provides a long-term continuous record, which contributes to the identifying changes that are improving predictive forest recovery models and to better vegetation management following catastrophic disturbances, such as earthquakes.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

General Research Fund from the Research Grants Council, Hong Kong, China

Collaborative Research Fund from the Research Grants Council, Hong Kong, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3