Computational Test for Conditional Independence

Author:

Thorjussen Christian B. H.12ORCID,Liland Kristian Hovde2ORCID,Måge Ingrid1ORCID,Solberg Lars Erik1ORCID

Affiliation:

1. Nofima AS, Osloveien 1, 1431 Ås, Norway

2. Faculty of Science and Technology, Norwegian University of Life Science, 1432 Ås, Norway

Abstract

Conditional Independence (CI) testing is fundamental in statistical analysis. For example, CI testing helps validate causal graphs or longitudinal data analysis with repeated measures in causal inference. CI testing is difficult, especially when testing involves categorical variables conditioned on a mixture of continuous and categorical variables. Current parametric and non-parametric testing methods are designed for continuous variables and can quickly fall short in the categorical case. This paper presents a computational approach for CI testing suited for categorical data types, which we call computational conditional independence (CCI) testing. The test procedure is based on permutation and combines machine learning prediction algorithms and Monte Carlo cross-validation. We evaluated the approach through simulation studies and assessed the performance against alternative methods: the generalized covariance measure test, the kernel conditional independence test, and testing with multinomial regression. We find that the computational approach to testing has utility over the alternative methods, achieving better control over type I error rates. We hope this work can expand the toolkit for CI testing for practitioners and researchers.

Funder

“Stiftelsen for Landbrukets Næringsmiddelforskning” (SLNF), The Research Council of Norway

Norwegian Agricultural Food Research Foundation

Publisher

MDPI AG

Reference29 articles.

1. The Hardness of Conditional Independence Testing and the Generalised Covariance Measure;Shah;Ann. Stat.,2018

2. Testing Graphical Causal Models Using the R Package “dagitty”;Ankan;Curr. Protoc.,2021

3. Pearl, J., Glymour, M., and Jewell, N.P. (2016). Causal Inference in Statistics—A Primer, Wiley.

4. A statistical problem for inference to regulatory structure from associations of gene expression measurements with microarrays;Chu;Bioinformatics,2003

5. Environmental Confounding in Gene-Environment Interaction Studies;VanderWeele;Am. J. Epidemiol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3