Multi-Head Self-Attention-Based Fully Convolutional Network for RUL Prediction of Turbofan Engines

Author:

Liu Zhaofeng1,Zheng Xiaoqing1ORCID,Xue Anke1,Ge Ming1,Jiang Aipeng1

Affiliation:

1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Remaining useful life (RUL) prediction is widely applied in prognostic and health management (PHM) of turbofan engines. Although some of the existing deep learning-based models for RUL prediction of turbofan engines have achieved satisfactory results, there are still some challenges. For example, the spatial features and importance differences hidden in the raw monitoring data are not sufficiently addressed or highlighted. In this paper, a novel multi-head self-Attention fully convolutional network (MSA-FCN) is proposed for predicting the RUL of turbofan engines. MSA-FCN combines a fully convolutional network and multi-head structure, focusing on the degradation correlation among various components of the engine and extracting spatially characteristic degradation representations. Furthermore, by introducing dual multi-head self-attention modules, MSA-FCN can capture the differential contributions of sensor data and extracted degradation representations to RUL prediction, emphasizing key data and representations. The experimental results on the C-MAPSS dataset demonstrate that, under various operating conditions and failure modes, MSA-FCN can effectively predict the RUL of turbofan engines. Compared with 11 mainstream deep neural networks, MSA-FCN achieves competitive advantages in terms of both accuracy and timeliness for RUL prediction, delivering more accurate and reliable forecasts.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3