SASLedger: A Secured, Accelerated Scalable Storage Solution for Distributed Ledger Systems

Author:

Sun HaoliORCID,Pi Bingfeng,Sun Jun,Miyamae Takeshi,Morinaga Masanobu

Abstract

Blockchain technology provides a “tamper-proof distributed ledger” for its users. Typically, to ensure the integrity and immutability of the transaction data, each node in a blockchain network retains a full copy of the ledger; however, this characteristic imposes an increasing storage burden upon each node with the accumulation of data. In this paper, an off-chain solution is introduced to relieve the storage burden of blockchain nodes while ensuring the integrity of the off-chain data. In our solution, an off-chain remote DB server stores the fully replicated data while the nodes only store the commitments of the data to verify whether the off-chain data are tampered with. To minimize the influence on performance, the nodes will store data locally at first and transfer it to the remote DB server when otherwise idle. Our solution also supports accessing all historical data for newly joined nodes through a snapshot mechanism. The solution is implemented based on the Hyperledger Fabric (HLF). Experiments show that our solution reduces the block data for blockchain nodes by 93.3% compared to the original HLF and that our advanced solution enhances the TPS by 9.6% compared to our primary solution.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference45 articles.

1. Bitcoin: A Peer-to-Peer Electronic Cash Systemhttps://bitcoin.org/bitcoin.pdf

2. Ethereum Homehttps://ethereum.org/en/

3. Home—EOSIO Blockchain Software & Serviceshttps://eos.io/

4. Quorumhttps://consensys.net/quorum/

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unlocking Blockchain UTXO Transactional Patterns and Their Effect on Storage and Throughput Trade-Offs;Computers;2024-06-07

2. Identification of the Problem and Research Methodology;Effective AI, Blockchain, and E-Governance Applications for Knowledge Discovery and Management;2023-09-25

3. Editorial for the Special Issue on Blockchain: Applications, Challenges, and Solutions;Future Internet;2022-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3