Validating Landsat Analysis Ready Data for Nearshore Sea Surface Temperature Monitoring in the Northeast Pacific

Author:

Wachmann Alena1,Starko Samuel23ORCID,Neufeld Christopher J.24,Costa Maycira1

Affiliation:

1. Department of Geography, University of Victoria, Victoria, BC V8P 5C2, Canada

2. Bamfield Marine Science Center, Bamfield, BC V0R 1B0, Canada

3. Oceans Institute & School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia

4. Department of Biology, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada

Abstract

In the face of global ocean warming, monitoring essential climate variables from space is necessary for understanding regional trends in ocean dynamics and their subsequent impacts on ecosystem health. Analysis Ready Data (ARD), being preprocessed satellite-derived products such as Sea Surface Temperature (SST), allow for easy synoptic analysis of temperature conditions given the consideration of regional biases within a dynamic range. This is especially true for SST retrieval in thermally complex coastal zones. In this study, we assessed the accuracy of 30 m resolution Landsat ARD Surface Temperature products to measure nearshore SST, derived from Landsat 8 TIRS, Landsat 7 ETM+, and Landsat 5 TM thermal bands over a 37-year period (1984–2021). We used in situ lighthouse and buoy matchup data provided by Fisheries and Oceans Canada (DFO). Excellent agreement (R2 of 0.94) was found between Landsat and spring/summer in situ SST at the farshore buoy site (>10 km from the coast), with a Landsat mean bias (root mean square error) of 0.12 °C (0.95 °C) and a general pattern of SST underestimation by Landsat 5 of −0.28 °C (0.96 °C) and overestimation by Landsat 8 of 0.65 °C (0.98 °C). Spring/summer nearshore matchups revealed the best Landsat mean bias (root mean square error) of −0.57 °C (1.75 °C) at 90–180 m from the coast for ocean temperatures between 5 °C and 25 °C. Overall, the nearshore image sampling distance recommended in this manuscript seeks to capture true SST as close as possible to the coastal margin—and the critical habitats of interest—while minimizing the impacts of pixel mixing and adjacent land emissivity on satellite-derived SST.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Reference61 articles.

1. The ESA climate change initiative: Satellite data records for essential climate variables;Hollmann;Bull. Am. Meteorol. Soc.,2013

2. Global in situ observations of essential climate and ocean variables at the air–sea interface;Centurioni;Front. Mar. Sci.,2019

3. An improved in situ and satellite SST analysis for climate;Reynolds;J. Clim.,2002

4. Chandler, P.C. (2010). Long-term temperature and salinity at BC lighthouses, State of Physical, Biological, and Selected Fishery Resources of Pacific Canadian Marine Ecosystems.

5. Half a century of satellite remote sensing of sea-surface temperature;Minnett;Remote Sens. Environ.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3