The Impact of Urbanization on Spatial–Temporal Variation in Vegetation Phenology: A Case Study of the Yangtze River Delta, China

Author:

Zhu Enyan1,Fang Dan2,Chen Lisu23,Qu Youyou1,Liu Tao1

Affiliation:

1. College of Transport and Communications, Shanghai Maritime University, Shanghai 201306, China

2. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

3. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China

Abstract

The response of vegetation phenology to urbanization has become a growing concern. As impervious surfaces change as urbanization advances, the variation in vegetation phenology at the dynamic urbanization level was analyzed to significantly quantify the impact of urbanization processes on vegetation phenology. Based on the MOD13Q1 vegetation index product from 2001 to 2020, vegetation phenology parameters, including the start of the growing season (SOS), the end of the growing season (EOS), and the length of the growing season (GSL), were extracted, and the spatial–temporal variation in vegetation phenology, as well as its response to urbanization, was comprehensively analyzed. The results reveal that (1) from 2001 to 2020, the average rates of change for the SOS, EOS, and GSL were 0.41, 0.16, and 0.57 days, respectively. (2) The vegetation phenology changes showed significant spatial–temporal differences at the urbanization level. With each 10% increase in the urbanization level, the SOS and EOS were advanced and delayed by 0.38 and 0.34 days, respectively. (3) The urban thermal environment was a major factor in the impact of urbanization on the SOS and EOS. Overall, this study elucidated the dynamic reflection of urbanization in phenology and revealed the complex effects of urbanization on vegetation phenology, thus helping policymakers to develop effective strategies to improve urban ecological management.

Funder

National Natural Science Foundation of China

Shanghai “Innovation Action Plan” Soft Science Project

MEL Visiting Fellowship

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Reference48 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3