Affiliation:
1. Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education, Xidian University, Xi’an 710071, China
Abstract
Wideband interference (WBI) can significantly reduce the image quality and interpretation accuracy of synthetic aperture radar (SAR). To eliminate the negative effects of WBI on SAR, we propose a novel end-to-end data-driven approach to mitigate WBI. Specifically, the WBI is mitigated by an explicit function called WBI mitigation–generative adversarial network (WBIM-GAN), mapping from an input WBI-corrupted echo to its properly WBI-free echo. WBIM-GAN comprises a WBI mitigation network and a target echo discriminative network. The WBI mitigation network incorporates a deep residual network to enhance the performance of WBI mitigation while addressing the issue of gradient saturation in the deeper layers. Simultaneously, the class activation mapping technique fully demonstrates that the WBI mitigation network can localize the WBI region rather than the target echo. By utilizing the PatchGAN architecture, the target echo discriminative network can capture the local texture and statistical features of target echoes, thus improving the effectiveness of WBI mitigation. Before applying the WBIM-GAN, the short-time Fourier transform (STFT) converts SAR echoes into a time–frequency domain (TFD) to better characterize WBI features. Finally, by comparing different WBI mitigation methods applied to several real measured SAR data collected by the Sentinel-1 system, the efficiency and superiority of WBIM-GAN are proved sufficiently.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献