WBIM-GAN: A Generative Adversarial Network Based Wideband Interference Mitigation Model for Synthetic Aperture Radar

Author:

Xu Xiaoyu1,Fan Weiwei1,Wang Siyao1,Zhou Feng1

Affiliation:

1. Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education, Xidian University, Xi’an 710071, China

Abstract

Wideband interference (WBI) can significantly reduce the image quality and interpretation accuracy of synthetic aperture radar (SAR). To eliminate the negative effects of WBI on SAR, we propose a novel end-to-end data-driven approach to mitigate WBI. Specifically, the WBI is mitigated by an explicit function called WBI mitigation–generative adversarial network (WBIM-GAN), mapping from an input WBI-corrupted echo to its properly WBI-free echo. WBIM-GAN comprises a WBI mitigation network and a target echo discriminative network. The WBI mitigation network incorporates a deep residual network to enhance the performance of WBI mitigation while addressing the issue of gradient saturation in the deeper layers. Simultaneously, the class activation mapping technique fully demonstrates that the WBI mitigation network can localize the WBI region rather than the target echo. By utilizing the PatchGAN architecture, the target echo discriminative network can capture the local texture and statistical features of target echoes, thus improving the effectiveness of WBI mitigation. Before applying the WBIM-GAN, the short-time Fourier transform (STFT) converts SAR echoes into a time–frequency domain (TFD) to better characterize WBI features. Finally, by comparing different WBI mitigation methods applied to several real measured SAR data collected by the Sentinel-1 system, the efficiency and superiority of WBIM-GAN are proved sufficiently.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Reference36 articles.

1. A tutorial on synthetic aperture radar;Moreira;IEEE Geosci. Remote Sens.,2013

2. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications;Reigber;Proc. IEEE,2013

3. A fast and robust method for detecting trend turning points in InSAR displacement time series;Ghaderpour;Comput. Geosci.,2023

4. Ship Detection in SAR Images Based on Adjacent Context Guide Fusion Module and Dense Weighted Skip Connection;Shi;IEEE Access,2022

5. Extraction and mitigation of radio frequency interference artifacts based on time-series sentinel-1 sar data;Tao;IEEE Trans. Geosci. Remote Sens.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3