A Machine-Learning-Based Framework for Retrieving Water Quality Parameters in Urban Rivers Using UAV Hyperspectral Images

Author:

Liu Bing12ORCID,Li Tianhong12ORCID

Affiliation:

1. State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

2. Center for Habitable Intelligent Planet, Institute of Artificial Intelligence, Peking University, Beijing 100871, China

Abstract

Efficient monitoring of water quality parameters (WQPs) is crucial for environmental health. Drone hyperspectral images have offered the potential for the flexible and accurate retrieval of WQPs. However, a machine learning (ML)-based multi-process strategy for WQP inversion has yet to be established. Taking a typical urban river in Guangzhou city, China, as the study area, this paper proposes a machine learning-based strategy combining spectral preprocessing and ML regression models with ground truth WQP data. Fractional order derivation (FOD) and discrete wavelet transform (DWT) methods were used to explore potential spectral information. Then, multiple methods were applied to select sensitive features. Three modeling strategies were constructed for retrieving four WQPs, including the Secchi depth (SD), turbidity (TUB), total phosphorus (TP), and permanganate index (CODMn). The highest R2s were 0.68, 0.90, 0.70, and 0.96, respectively, with corresponding RMSEs of 13.73 cm, 6.50 NTU, 0.06 mg/L, and 0.20 mg/L. Decision tree regression (DTR) was found to have the potential with the best performance for the first three WQPs, and eXtreme Gradient Boosting Regression (XGBR) for the CODMn. Moreover, tailored feature selection methods emphasize the importance of fitting processing strategies for specific parameters. This study provides an effective framework for WQP inversion that combines spectra mining and extraction based on drone hyperspectral images, supporting water quality monitoring and management in urban rivers.

Funder

National Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3