Abstract
This paper proposes a proximity imaging sensor based on a tomographic approach with a low-cost conductive sheet. Particularly, by defining capacitance density, physical proximity information is transformed into electric potential. A novel theoretical model is developed to solve the capacitance density problem using the tomographic approach. Additionally, a prototype is built and tested based on the model, and the system solves an inverse problem for imaging the capacitance density change that indicates the object’s proximity change. In the evaluation test, the prototype reaches an error rate of 10.0–15.8% in horizontal localization at different heights. Finally, a hand-tracking demonstration is carried out, where a position difference of 33.8–46.7 mm between the proposed sensor and depth camera is achieved at 30 fps.
Funder
Japan Society for the Promotion of Science
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献