A Study of One-Class Classification Algorithms for Wearable Fall Sensors

Author:

Santoyo-Ramón José AntonioORCID,Casilari EduardoORCID,Cano-García José ManuelORCID

Abstract

In recent years, the popularity of wearable devices has fostered the investigation of automatic fall detection systems based on the analysis of the signals captured by transportable inertial sensors. Due to the complexity and variety of human movements, the detection algorithms that offer the best performance when discriminating falls from conventional Activities of Daily Living (ADLs) are those built on machine learning and deep learning mechanisms. In this regard, supervised machine learning binary classification methods have been massively employed by the related literature. However, the learning phase of these algorithms requires mobility patterns caused by falls, which are very difficult to obtain in realistic application scenarios. An interesting alternative is offered by One-Class Classifiers (OCCs), which can be exclusively trained and configured with movement traces of a single type (ADLs). In this paper, a systematic study of the performance of various typical OCCs (for diverse sets of input features and hyperparameters) is performed when applied to nine public repositories of falls and ADLs. The results show the potentials of these classifiers, which are capable of achieving performance metrics very similar to those of supervised algorithms (with values for the specificity and the sensitivity higher than 95%). However, the study warns of the need to have a wide variety of types of ADLs when training OCCs, since activities with a high degree of mobility can significantly increase the frequency of false alarms (ADLs identified as falls) if not considered in the data subsets used for training.

Funder

European Regional Development Fund

Junta de Andalucía

Universidad de Málaga

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Reference64 articles.

1. World Health Organization Falls: Key Factshttps://www.who.int/news-room/fact-sheets/detail/falls

2. WHO Global Report on Falls Prevention in Older Age,2007

3. World Health Organization Ageing and Health—Key Factshttp://www.who.int/mediacentre/factsheets/fs404/en/

4. Falls in Older People: Risk Factors and Strategies for Prevention;Lord,2007

5. Analysis of Android Device-Based Solutions for Fall Detection

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3