Abstract
The search for effective reagents for the flotation of non-ferrous metals from mineral raw materials is an actual problem. The article discusses the results of research on improving the technology of processing copper–molybdenum ores using a combined collector emulsion. The object of research was copper–molybdenum ore containing 0.43% copper and 0.0089% molybdenum. Copper minerals are represented by chalcopyrite 1.2% and chalcocite 0.015%, while covellite is present in a much smaller amount. The main mineral of molybdenum is molybdenite. The cycle of collective copper–molybdenum flotation includes the main flotation, control flotation, and three re-cleanings of concentrate. In the basic mode, the collective Cu–Mo concentrate was produced with the copper content of 16.25% with an extraction of 77.79% and with the molybdenum content of 0.45% with an extraction of 79.38%. Reaflot, thionocarbamate, and butyl xanthate were used in a ratio of 1:3:15 to prepare a combined collector agent. In order to produce the combined collector emulsion, the best degree of dispersion, which amounted to 99.5% of particles with a size of −3.6 μm, was chosen. During the Cu–Mo ore flotation using an optimally dispersed microemulsion of the combined collector agent, a collective Cu–Mo concentrate was obtained with a copper content of 18.2% with an extraction of 83.58%, and with a molybdenum content of 0.49% with an extraction of 88.46%. The use of a combined collector agent increases the extraction of copper into the collective Cu–Mo concentrate by 5.79%, while the extraction of molybdenum increases by 9.08%.
Funder
Ministry of Education and Science of the Republic of Kazakhstan
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference29 articles.
1. Priority areas of research in the field of mineral processing;Ore Benef.,2014
2. Complex-forming collector for selective flotation of chalcopyrite;Phys. Tech. Probl. Miner. Dev.,2015
3. Influence of dithiocarbamate on metal complex and thin film depositions;Int. J. Innov. Res. Sci. Eng. Technol.,2014
4. Adsorption of O-isopropyl-N-ethyl thionocarbamate on Cu sulfide ore minerals;Miner. Eng.,2014
5. Bu, Y., Hu, Y., Sun, W., Gao, Z., and Liu, R. (2018). Fundamental Flotation Behaviors of Chalcopyrite and Galena Using O-Isopropyl-N-Ethyl Thionocarbamate as a Collector. Minerals, 8.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献