Study on Macro-Meso Deformation Law and Acoustic Emission Characteristics of Granular Gangue under Different Loading Rates

Author:

Qin Tao,Guo Xin,Huang Yanli,Wu Zhixiong,Qi Wenyue,Wang Heng

Abstract

Bulk gangue is a common backfill material in solid backfill mining. After backfilling into the goaf, bulk gangue serves as the main body to bear the load of overlying strata, and its deformation resistance is the key factor affecting the backfill quality. In this study, the laterally confined compression test of broken gangue was designed, the compaction deformation characteristics of gangue specimens under different loading rates were studied, the acoustic emission (AE) energy characteristics of gangue specimens under compression were analyzed, and the relationship model between macroscopic deformation of broken gangue under compression and AE energy was established. The particle flow numerical software PFC2D was used to stimulate the particle breakage in the gangue compaction process, and the coal gangue particle model was established through particle cluster units. The particle force chain distribution and fracture evolution characteristics of gangue specimens in the compression process were studied, and the macroscopic deformation mechanism was revealed from the mesoscopic perspective. The results showed that: the porosity variation of the gangue specimen increases with the increase of loading rate; the porosity increases with the decrease in the strain, the porosity decreases with the increase in the stress, and the relationship between porosity and stress is monotonously decreasing. With the increase of loading rate, the AE signals produced by particle breakage become stronger, while the influence of the loading rate on the maximum strain, fragmentation and AE signal of the specimen is gradually weakened. Under different loading rates, the “instability-optimization” of the skeleton force chain structure of the gangue model and the crushing-recombination of cracks are the main reasons for the compaction deformation of gangue specimens at the early stage of loading. The research results are of great significance to reveal the deformation mechanism of coal gangue as backfill materials under compression.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of Hebei Province

Hebei Provincial Postdoctoral Science Foundation

Tianshan Innovation Team Program

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference27 articles.

1. Transparent characterization of spatial-temporal evolution of gangue solid wastes’ void structures during compression based on CT scanning;Powder Technol.,2020

2. A preliminary study of solid-waste coal gangue based biomineralization as eco-friendly underground backfill material: Material preparation and macro-micro analyses;Sci. Total Environ.,2021

3. Analysis of the Control Effect and Parameter Optimisation of Urban Surface Deformation in Underground Coal Mining with Solid Backfilling;Adv. Civ. Eng.,2021

4. Crack propagation patterns and factors controlling complex crack network formation in coal bodies during tri-axial supercritical carbon dioxide fracturing;Fuel,2020

5. Deformation response of roof in solid backfilling coal mining based on viscoelastic properties of waste gangue;Int. J. Min. Sci. Technol.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3