Reconstructing a Three-Dimensional Geological Model from Two-Dimensional Depositional Sections in a Tide-Dominated Estuarine Reservoir: A Case Study of Oil Sands Reservoir in Mackay River, Canada

Author:

Huang Jiaxuan,Huang Jixin,Yu Diyun,Zhang Weixue,Yin Yanshu

Abstract

A tide-dominated estuarine reservoir is an important oil reservoir. However, due to the force of bidirectional water flow, its internal structure is complex, and the heterogeneity is serious. Accurately establishing the tide-dominated estuarine reservoir model is a great challenge. This paper takes the Mackay River oil sands reservoir in Canada as the research object to establish the elaborate geological model of a tide-dominated estuarine reservoir. Through the meticulous depiction of core data, 14 kinds of lithofacies and nine kinds of architectural elements are identified, and the lithological and electrical response in sedimentary architectural elements is established. On this basis, the plane and vertical distribution of architectural elements, as well as the spatial superimposition patterns, are depicted and characterized through well seismic combination and plane and section interaction, and the representative plane and section architecture maps are obtained as 2D training images (TIs) for multi-point statistical modeling. The 2D TI is scanned by 2D data template to obtain the multi-point statistical probability of the 2D spatial architectural pattern. Then, the 2D multi-point probability is fused to generate three-dimensional (3D) multi-point statistical probability by the probabilistic fusion. Finally, Monte Carlo sampling is used to predict the spatial distribution of architectures, and an elaborate geological model of a tide-dominated estuarine reservoir is established. Compared with the traditional sequential indication modeling method, the point-to-point error of the model section based on the 2D section reconstruction method is only 25.92%, while the sequential indication modeling method is as high as 58.52%. Even far from the TI, the point-to-point error of the 2D section model is 33.13%. From the cross-validation, the average error of the 2D section is 11%, while the sequential indicator modeling error is 23.1%, which indicates that the accuracy of 2D reconstruction of the estuarine reservoir model is high, and this method is suitable for the establishment of the tide-dominated estuarine reservoir model.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference30 articles.

1. Dynamics and facies model of a macrotidal sand-bar complex, Cobequid Bay-Salmon River Estuary (Bay of Fundy);Sedimentology,1990

2. Holocene and modern sediment storage in the subtropical macrotidal Fitzroy River estuary, Southeast Queensland, Australia;Sediment. Geol.,2007

3. Bedload sediment transport dynamics in a macrotidal embayment, and implications for export to the southern Great Barrier Reef shelf;Mar. Geol.,2007

4. Sequence Stratigraphic Framework and Development Model of the Cretaceous in Northeast Block, Oriente Basin, Ecuador;Acta Sedimentol. Sin.,2014

5. Geophysical 3D-static reservoir and basin modeling of a Jurassic estuarine system (JG-Oilfield, Abu Gharadig basin, Egypt);J. Southeast Asian Earth Sci.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3