Simulation Study on the Disaster-Causing Mechanism of Geothermal Water in Deep High-Temperature Heat-Damaged Mines

Author:

Fan Bowen,Shi Peng,Wan ZhijunORCID,Zhang YuanORCID,Xiong LuchangORCID,Hu Songbo,Gou Hong

Abstract

This paper takes the bottom pumping roadway of 33190 machine roadway in the No.10 mine of China PingMeiShenMa Group as the engineering background. This mine is a hydrothermal mine, with strong heat conduction and thermal convection activities between the surrounding rock and geothermal water. This forms a geothermal anomaly area, making the overall temperature of the surrounding rock temperature field increase and affecting the mine thermal environment. According to the measured field data and the engineering geological conditions of the roadway, a roadway seepage-heat transfer model is constructed using the comsol numerical simulation software, emulating the effect of geothermal water upwelling to the roadway through random cracks in the surrounding rock at different temperatures and pressures, which has an impact on the airflow temperature field of the roadway. The study shows that the evolution law of the airflow temperature field in the roadway under different water upwelling temperatures and pressures is roughly the same, and the temperature at the entrance of the roadway is almost unchanged: the heating rate is 0, and then increases linearly. The variation in the airflow outlet temperature is analyzed, both under the conditions of same temperature but different pressure, and under the same pressure but different temperature. The water upwelling temperature and the cooling efficiency are positively correlated, and the overall growth rate of the airflow temperature is positively correlated with the water upwelling temperature and pressure; however, the effect of temperature is far greater than that of pressure. The upwelling temperature of geothermal water is the main influencing factor on the temperature field of the airflow in the roadway. Therefore, it is possible to reduce the temperature of upwelling water by laying heat insulation materials on the bottom plate, evacuating geothermal water and circulating cold-water by injection, so as to improve the thermal environment of water-heated mines and increase their production efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference24 articles.

1. Mine geothermal and heat hazard prevention and control in China;Wan;Disaster Adv.,2013

2. Zhang, Y. Research on Unsteady Temperature Field and Thermal Insulation and Cooling Mechanism of High Ground Temperature Roadway Surrounding Rock. Ph.D. Thesis, 2013.

3. Analysis of deep heat damage in Huainan mine area and study of hot water resource utilization;Xu;China Coal,2009

4. Theoretical and technological framework for coal-thermal co-mining;Wan;J. Coal,2018

5. Formation factors of high temperature heat damage in Pingdingshan coal mine and prevention and control measures;Sheying;Mod. Agric. Sci. Technol.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3