Co-Firing of Sawdust and Liquid Petroleum Gas in the Application of a Modified Rocket Stove

Author:

Comsawang Paisan,Nanetoe Suwat,Soponpongpipat Nitipong

Abstract

The heating rate, firepower, and thermal efficiency of a modified rocket stove using sawdust and liquid petroleum gas (LPG) as co-firing fuel were investigated. Three modified rocket stoves with a height of 400 mm and outside diameters of 225, 385, and 550 mm were tested. It was found that there was an insignificant difference in heating rate and firepower when stoves were tested without co-firing with LPG. In this case, the stove heating rate was in the range of 1.49–1.55 °C/min. When LPG was used, the heating rate tended to linearly increase with the increase of LPG flow rate. The heating rate was in range of 2.42–2.80, 2.63–3.27, and 3.07–4.22 °C/min when LPG consumption rates were 2.38 × 10−5, 3.33 × 10−5, and 5.00 × 10−5 kg/s, respectively. The slight increase of stove heating rate and firepower was seen when the stove diameter was increased from 225 to 385 mm. The increase of stove diameter from 385 to 550 mm resulted in a huge increase of heating rate and firepower. Thermal efficiency of the sawdust stove without LPG decreased from 17.90% to 9.97% when the stove diameter was increased from 225 to 550 mm. For co-firing of sawdust and LPG, the increase of LPG flow rate from 2.38 × 10−5 to 5 × 10−5 kg/s caused the linear increase of thermal efficiency from 20.27% to 33.80%, 29.36% to 38.89%, and 25.25% to 36.39% for the stove with diameters of 225, 385, and 550 mm., respectively.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference13 articles.

1. Evaluation of domestic cookstove technologies implemented across the world to identify possible options for clean and efficient cooking solutions;Raman;J. Energy Chem. Eng.,2013

2. A computational model for a rocket mass heater

3. Review of Rocket Cook-Stove Geometrical Aspects for its Performance Improvement

4. Predicting and analyzing the performance of biomass-burning natural draft rocket cookstoves using computational fluid dynamics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3