Common Frame Dynamics for Conically-Constrained Spacecraft Attitude Control

Author:

Christopher Cruz Arnold,Bani Younes AhmadORCID

Abstract

Attitude control subjected to pointing constraints is a requirement for most spacecraft missions carrying sensitive on-board equipment. Pointing constraints can be divided into two categories: exclusion zones that are defined for sensitive equipment such as telescopes or cameras that can be damaged from celestial objects, and inclusion zones that are defined for communication hardware and solar arrays. This work derives common frame dynamics that are fully derived for Modified Rodrigues Parameters and introduced to an existing novel technique for constrained spacecraft attitude control, which uses a kinematic steering law and servo sub-system. Lyapunov methods are used to redevelop the steering law and servo sub-system in the common frame for the tracking problem for both static and dynamic conic constraints. A numerical example and comparison between the original frame and the common frame for the static constrained tracking problem are presented under both unbounded and limited torque capabilities. Monte Carlo simulations are performed to validate the convergence of the constrained tracking problem for static conic constraints under small perturbations of the initial conditions. The performance of dynamic conic constraints in the tracking problem is addressed and a numerical example is presented. The result of using common frame dynamics in the constrained problem shows decreased control effort required to rotate the spacecraft.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Constrained Attitude Control on SO(3) via Semidefinite Programming;Walsh;J. Guid. Control. Dyn.,2018

2. A Survey and Assessment of the Capabilities of Cubesats for Earth Observation;Selva;Acta Astronaut.,2012

3. Wolfe, M., and Osten, R. (2014). JWST Primer v3.0. IEEE Aerosp. Conf., 1–10.

4. Investigation of the Stability of Satellite Large Angle Attitude Manoeuvres Using Nonlinear Optimiztion Methods;Dempster;Autom. Control. Space 1982,1983

5. Cochran, J., and Junkins, J. (1975). Flight Mechanics/Estimation Theory Symposium, NASA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3