Deep-Sequence–Aware Candidate Generation for e-Learning System

Author:

Ilyosov Aziz,Kutlimuratov Alpamis,Whangbo Taeg-Keun

Abstract

Recently proposed recommendation systems based on embedding vector technology allow us to utilize a wide range of information such as user side and item side information to predict user preferences. Since there is a lack of ability to use the sequential information of user history, most recommendation system algorithms fail to predict the user’s preferences more accurately. Therefore, in this study, we developed a novel recommendation system that takes advantage of sequence and heterogeneous information in the candidate-generation process. The principle underlying the proposed recommendation model is that the new sequence based embedding layer in the model catches the sequence pattern of user history. The proposed deep-learning model may improve the prediction accuracy using user data, item data, and sequential information of the user’s profile. Experiments were conducted on datasets of the Korean e-learning platform, and the empirical results confirmed the capability of the proposed approach and its superiority over models that do not use the sequences of the heterogeneous information of users and items for the candidate-generation process.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3