Estimation of Surface Downward Shortwave Radiation over China from Himawari-8 AHI Data Based on Random Forest

Author:

Hou Ning,Zhang Xiaotong,Zhang Weiyu,Wei Yu,Jia KunORCID,Yao Yunjun,Jiang BoORCID,Cheng JieORCID

Abstract

Downward shortwave radiation (RS) drives many processes related to atmosphere–surface interactions and has great influence on the earth’s climate system. However, ground-measured RS is still insufficient to represent the land surface, so it is still critical to generate high accuracy and spatially continuous RS data. This study tries to apply the random forest (RF) method to estimate the RS from the Himawari-8 Advanced Himawari Imager (AHI) data from February to May 2016 with a two-km spatial resolution and a one-day temporal resolution. The ground-measured RS at 86 stations of the Climate Data Center of the Chinese Meteorological Administration (CDC/CMA) are collected to evaluate the estimated RS data from the RF method. The evaluation results indicate that the RF method is capable of estimating the RS well at both the daily and monthly time scales. For the daily time scale, the evaluation results based on validation data show an overall R value of 0.92, a root mean square error (RMSE) value of 35.38 (18.40%) Wm−2, and a mean bias error (MBE) value of 0.01 (0.01%) Wm−2. For the estimated monthly RS, the overall R was 0.99, the RMSE was 7.74 (4.09%) Wm−2, and the MBE was 0.03 (0.02%) Wm−2 at the selected stations. The comparison between the estimated RS data over China and the Clouds and Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) RS dataset was also conducted in this study. The comparison results indicate that the RS estimates from the RF method have comparable accuracy with the CERES-EBAF RS data over China but provide higher spatial and temporal resolution.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3